

Conductor Todo en Aleacion de Aluminio, Tipo AAAC-6201.

Características

Trenzado clase AA usado para líneas de transmisión aéreas.

Aplicación

Usado como cable de transmisión aéreo desnudo, como cable de distribución primaria y secundaria.

Donde se requiere una mejor resistencia a la corrosión que el ACSR, como instalaciones costeras, y donde se desea un rango de mayorresistencia-peso.

Estándares

ASTM B-399

Especificación para Conductor de Aleación de aluminio 6201-T81 de Paso-trenzado Concéntrico.

ASTM B-398

Especificación para Cable de Aleación de Aluminio 6201-T81 para propósitos eléctricos

Información de ingeniería

Conductor: Alambres de aleación de Aluminio 6201-T81.

Trenzado: Alambres de aleación de aluminio 6201-T81 concéntricamente trenzados, consistiendo en una o mas capas de hilos que rodean helicoidalmente a un alambre central.

Conductor Todo en Aleacion de Aluminio, Tipo AAAC-6201.

								AAAC - All A	Aluminum Alloy	Conductors
Nombre Clave	Tamaño de conductor		Numero	Diámetro de Hilos	Diámetro de Cable Completo	Peso	Fuerza Nominal	Resistencia Nominal		** Ampacidad 75°C
								ohms/1000ft		
	kcmil	mm. ²		mm	mm	Kg/ Km,	kN	* DC @ 20°C	* AC@75°C	Amps
-	1 000 000	508.0	37	4.18	37.00	1393	146	0.02015	0.02445	951
Greeley	927 200	469.8	37	4.02	28.14	1287	136	0.02173	0.02655	904
Flint	740 800	375.4	37	3.59	25.13	1028	108	0.02720	0.03323	784
Elgin	652 400	330.6	19	4.71	23.55	905.2	97.5	0.03089	0.03774	723
Darien	559 500	283.5	19	4.36	21.80	776.3	83.6	0.03602	0.04400	656
Cairo	465 400	235.8	19	3.98	19.90	645.7	69.6	0.04330	0.05290	585
Canton	394 500	199.9	19	3.66	18.30	547.4	59.0	0.05107	0.06239	527
Butte	312 800	158.5	19	3.26	16.30	434.0	46.7	0.06443	0.07871	455
Alliance	246 900	125.1	7	4.77	14.31	342.6	38.1	0.08162	0.09971	391
Amherst	195 700	99.2	7	4.25	12.75	271.5	30.2	0.10300	0.12583	338
Anaheim	155 400	78.7	7	3.78	11.34	215.6	24.0	0.12970	0.15845	292
Azusa	123 300	62.5	7	3.37	10.11	171.0	19.0	0.16350	0.19974	252
Ames	77 470	39.2	7	2.67	8.01	107.5	12.5	0.26010	0.31775	189
Alton	48 690	24.7	7	2.12	6.36	67.56	7.84	0.41390	0.50564	141
Akron	30 580	15.5	7	1.68	5.04	42.44	4.92	0.65880	0.80482	105

Nota: Las dimensiones y pesos están sujetos a tolerancias de manufactura.

^{*} Valores tomados de la ASTM y calculados con el estándar IEEE 738 2006.

^{**} Ampacidad basada en temperatura de conductor de 75°C , temperatura ambiente de 25°C, velocidad de viento de 0.61 mt/seg. ,soleado, emisividad de 0.5